If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7a^2-63a=0
a = 7; b = -63; c = 0;
Δ = b2-4ac
Δ = -632-4·7·0
Δ = 3969
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3969}=63$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-63)-63}{2*7}=\frac{0}{14} =0 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-63)+63}{2*7}=\frac{126}{14} =9 $
| 4/11z=3/7 | | 1/8z=1/2 | | x^+3/4x=1/2 | | 2(-3x+19)=11 | | 1/8z=3/7 | | 1/8z=4/11 | | 3x-2x+8=4x-8 | | -8c+12=-5c | | X=8.3e-6 | | 2(x-2)^2-108=0 | | 5x−5=x+15 | | 43=-7w-6 | | 3x^+8=83 | | 3x^-4x=2 | | 6(s-2)=18 | | 100=10(t+9) | | 25+2x=83 | | K(-5)=6x-100 | | 7^(2x-2)=2401 | | -7=7(2+w) | | 2.27272723x11=25 | | 1/4p=16p-1/3p | | 0.2x-9=7 | | 13+6x=175 | | 7^2x-2=2401 | | 9(x-3)=4x+3 | | 6n^2+12n-1=10 | | -2(w+9)+-12=-2 | | -11x-29=51-15x | | −2(8−y)=−6y. | | x5-3=-7 | | -1/5x+50=-2x+5 |